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Part |: Perceptron & Act. Fns.

and the intuition
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Intro to Perceptron

* Our lecture slides have some good content, but let’s
discuss some roadmaps & high level intuition stuff!

* https://www.seas.upenn.edu/~cis5 | 9/fall2020/assets/lectures
[lecture-4/Lecture4-online.pdf (Page 50 ...)
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Intro to Perceptron
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https://towardsdatascience.com/what-the-hell-is-perceptron-6262 178 4f53



Activation Functions - Overview

* Most crucial part of every neural network :

https://www.analyticssteps.com/blogs/7-types-activation-functions-neural-network
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Part 2: Adagrad
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What is Adagrad!?

- tuning a fix learning rate is tricky

- adaptively scaled the learning rate for each dimension base
on historical information
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Conditional Probability

— Converting the output of a Perceptron to a conditional probability
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P(y =+1lx) = - s I /‘

— The parameter A can be tuned on a development set | J
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Recap on SGD/Gradient Descent

Wir1 = W — 1Tt 9w

L(X,y,w,0) =max {0,1 — y(W'x + 0)}
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L(X,y,w,0)

= Wt — Tt 9t

== (-1 loss
= hinge loss
cross-entropy loss

== exponential loss




Gradient Update

Wip1 = We—1: 9w Q(Ze, W) = W - 11| Gt
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{0 if ywix+6) > 1
—y -+ X otherwise

_{0 if y(wix +6) > 1
~ | —y otherwise




Now! Learning rate!

Wip1 = We =1 Gw Q(Ze, W) = W =119
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Why Adagrad!?

Advantages of Using AdaGrad

e it eliminates the need to manually tune the learning rate
e convergence is faster and more reliable — than simple SGD when the scaling of the

weights is unequal
e ltis not very sensitive to the size of the master step

Overview of Gradient Descent Based Optimization Algorithm:
https://ruder.io/optimizing-gradient-descent/
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Tips for hw

1. separately update w and theta
2. keep track of G for wi and H for theta
3. use sqrt sum of G/ H to update learning rate
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Part 3: Regularization



Why Regularization?
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- avoid overfitting

more robust to noise



Regularization Via Averaged Perceptron

Variables: .
— m: number of examples
— k: number of mistakes
— ¢;: consistency count for hypothesis v;
— T: number of epochs

This can be done on top of any online
mistake driven algorithm.

In HW 2 you will run it over three
different algorithms.

The implementation requires thinking.

Input: a labeled training {{x1, y1}, {x2, ¥2}, ... {Xm, Y }}
Output: a list of weighted perceptrons {{vq, c1}, ..., {Vx, cx }}
Initialize: k = 0,v;, =0,¢c;, =0
Repeat T times:
— Fori=1,.. m; better.
— Compute prediction y' = sgn(vL - x;)

— Ify'=y,thency, =c¢; +1
else: vy 1= +yixX;cpi1=Lk=k+1

Prediction:

Averaged version of Perceptron/Winnow is as
good as any other linear learning algorithm, if not

— Given: a list of weighted perceptrons {{v4, ¢1}, ..., {Vk, cx }}; @ new example x

— Predict the label (x) as follows: y(x) = sgn[¥¥ c;(v] x)]
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Perceptron

Input set of examples and their labels
= ((xl,yl), (xm: ym)) € R™ X {_1,1}m, n, Hlnit
* I|nitializew < 0 and 6 < 0;,;;
* For every training epoch:
» foreveryx; € X:

— 57 -~ Sign(< W, Xj > —9) Just to make sure we understand

2o that we learn both w and 6
— 1f (9 # y;)

® w<—w+ny]x]
* 0 < 0+ny;
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The Key |deas

- want to somehow regularize or shrink coefficient (w)
towards zero

- In other words, this technique discourages learning a more

complex or flexible model, so as to avoid the risk of
overfitting
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Mathematically

Jw) ==X Q(zi, wy) + AR; (W;)

Loss: Regularization:

LMS case: Q((x,y),w) = (v - wT x)? m
- Rw) = |Iw| |; gives the optimization problem called Ridge Regression. L2: A Z |w; |2
- Rw) = ||w||1 gives a problem called the LASSO problem i=1

Hinge Loss case: Q((x,y),w) = max(0,1 — yw'x) m
- RWw) = ||w||§ gives the problem called Support Vector Machines LI: A z |w1|
=1

Logistics Loss case:Q((x,y),w) = log(1 + exp{—y wT x})

- RWw) = ||w| |§ gives the problem called Logistics Regression
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Difference between L1 & L2 Regularization
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Choose which?

LI:

- penalizes sum of absolute value of weights.

- has a sparse solution

- multiple solutions

- has built in feature selection

- robust to outliers

- generates model that are simple and
interpretable but cannot learn complex
patterns
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L2:

penalizes sum of square weights.

has a non sparse solution

has one solution

has no feature selection

is not robust to outliers

better prediction when output variable is a
function of all input features

is able to learn complex data patterns
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Playground

-0

DATA

Which dataset
do you want to
use?

4]

Training data
percentage: 50%

—o

Noise: 50
—o

Batch size: 10
—e

REGENERATE

gy

Epochs

000,000

FEATURES

Which
properties do
you want to
feed in?

Learning rate Activation Regularization Regularization rate Problem type
0.03 v Linear v None v 0 v Classificatior
+ — 1 HIDDEN LAYERS OUTPUT

Test loss 0.433
£y @ Training loss 0.438

1 neuron

3

This is the output
from one neuron.
Hover to see it
larger.

Colors shows —
data, neuronand ' !
4

1
weight values. 2

D Show test data D Discretize output
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https://developers.google.com/machine-lear
ning/crash-course/regularization-for-simplicit
y/playground-exercise-examining-12-regulari
zation
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